25 research outputs found

    A Third-Order Newton-Type Method for Finding Polar Decomposition

    Get PDF

    A New High-Order Stable Numerical Method for Matrix Inversion

    Get PDF
    A stable numerical method is proposed for matrix inversion. The new method is accompanied by theoretical proof to illustrate twelfth-order convergence. A discussion of how to achieve the convergence using an appropriate initial value is presented. The application of the new scheme for finding Moore-Penrose inverse will also be pointed out analytically. The efficiency of the contributed iterative method is clarified on solving some numerical examples

    A Numerical Method for Computing the Principal Square Root of a Matrix

    Get PDF
    It is shown how the mid-point iterative method with cubical rate of convergence can be applied for finding the principal matrix square root. Using an identity between matrix sign function and matrix square root, we construct a variant of mid-point method which is asymptotically stable in the neighborhood of the solution. Finally, application of the presented approach is illustrated in solving a matrix differential equation

    A Class of Steffensen-Type Iterative Methods for Nonlinear Systems

    Get PDF
    A class of iterative methods without restriction on the computation of Fréchet derivatives including multisteps for solving systems of nonlinear equations is presented. By considering a frozen Jacobian, we provide a class of m-step methods with order of convergence m+1. A new method named as Steffensen-Schulz scheme is also contributed. Numerical tests and comparisons with the existing methods are included

    A family of Kurchatov-type methods and its stability

    Full text link
    [EN] We present a parametric family of iterative methods with memory for solving of nonlinear problems including Kurchatov¿s scheme, preserving its second-order of convergence. By using the tools of multidimensional real dynamics, the stability of members of this family is analyzed on low-degree polynomials, showing some elements of this class more stable behavior than the original Kurchatov¿s method. The iteration is extended for multi-dimensional case. Computational efficiencies of proposed technique is discussed and compared with the existing methods. A couple of numerical examples are considered to test the performance of the new family of iterations.The authors thank to the anonymous referees for their valuable comments and for the suggestions that have improved the final version of the paper. This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089.Cordero Barbero, A.; Soleymani, F.; Torregrosa Sánchez, JR.; Haghani, FK. (2017). A family of Kurchatov-type methods and its stability. Applied Mathematics and Computation. 294:264-279. https://doi.org/10.1016/j.amc.2016.09.021S26427929

    On a Derivative-Free Variant of King’s Family with Memory

    Get PDF
    The aim of this paper is to construct a method with memory according to King’s family of methods without memory for nonlinear equations. It is proved that the proposed method possesses higher R-order of convergence using the same number of functional evaluations as King’s family. Numerical experiments are given to illustrate the performance of the constructed scheme

    On a New Three-Step Class of Methods and Its Acceleration for Nonlinear Equations

    Get PDF
    A class of derivative-free methods without memory for approximating a simple zero of a nonlinear equation is presented. The proposed class uses four function evaluations per iteration with convergence order eight. Therefore, it is an optimal three-step scheme without memory based on Kung-Traub conjecture. Moreover, the proposed class has an accelerator parameter with the property that it can increase the convergence rate from eight to twelve without any new functional evaluations. Thus, we construct a with memory method that increases considerably efficiency index from 81/4≈1.681 to 121/4≈1.861. Illustrations are also included to support the underlying theory
    corecore